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Summary  

The UK Highways Agency has commissioned two companion studies for the review of the dynamic sensitivity of 
footbridges.  As part of their contribution to this work, Flint & Neill Partnership have undertaken a fairly extensive 
theoretical review of the combined subjects of pedestrian loading, response prediction and user perception of bridge 
motion.  The results of this study form the basis for a new approach to the assessment of the dynamic responses of 
footbridges, and aspects of which are being presented in a related papers at this conference [1][2]. 

This paper presents of some of the background to the development the design strategy developed for the prediction of 
vertical responses.  The material presented in this paper serves two purposes (a) it provides useful background in order 
to assist practicing engineers to better understand a few of the many important theoretical issues, and (b) it provides an 
example of a simple analysis algorithm (able to be implemented in a spreadsheet) that, in many cases, will enable 
engineers to calculate pedestrian dynamic responses with the same precision as that of a full time history analysis. 

(This is one of a series of papers [3][4][5][6] written to report on the progress of the above study.  Two companion papers 
[1][2] are being presented at this conference that deal principally with the development of proposals for more relevant 
and searching assessment rules.) 
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1. Introduction 

The main content of this paper deals with 3 specific issues:- 

• A description of the development of factors to cater for the relative nuisance value of pedestrian groups.; 

• A discussion of some particular problems that occur in the prediction of vertical bridge responses due to crowd 
loading using spectral analytical methods; 

• A method for the calculation of dynamic responses at resonance. 

 

2. The relative nuisance value of pedestrian groups 

 

2.1 A definition for the ‘relative nuisance’ value of the response 

BS6472 [7] introduces the notion of vibration doses.  In this a useful equivalence is made between rare relatively large 
amplitude motion, and more frequent response of a smaller magnitude.  The vibration dose time-dependency rule 
adopted means that a two-fold increase in vibration amplitude is equivalent to a 16 fold decrease in the duration of the 
vibration.  (In other words a fourth power time dependency rule.) 

 
Such a relationship between the amplitude and duration of pedestrian response is thought to be a more appropriate 
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measure of the nuisance (comfort) level of bridge response than either the simple RMS or the maximum value of the 
signal.  In particular this approach provides the means to compare, 

• slowly decaying, lightly damped response patterns with the obviously lower nuisance level of a highly damped 
response having the same peak amplitude, 

• simple sinusoidal signals typical of the passage of a single pedestrian with probabilistic extreme value 
expressions of response that might result from a spectral analysis. 

Hence we choose to start this section by defining that the relative nuisance level of a given response pattern is to be 
determined by means of the ‘root-root-4th power mean’ (RR4M) of the signal. 

 

2.2 Pedestrian groups 

While it is recognised that it is possible for the members of small groups of pedestrians to walk in step with each other 
this is not normally what occurs in most cases.  Observations by TRRL [8] on 1200 people walking normally over 
footbridges has produced the result that 4 per cent of the sample observations were pairs of people walking together, in 
step, for at least ten paces. One such group of three was observed, but larger groups were not in step. However these 
results, rather than indicating a tendency that pedestrians might be commonly walk in step, seems to demonstrate that 
synchronisation normally occurs with a similar likelihood to that of wholly random occurrences.   

In Figure 1 below we show a simple example representative of two pedestrians walking in step, of two superimposed 
sinusoidal signals with slightly different frequencies.  This demonstrates the expected beating of the net response as the 
component signals match periodically.   
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Figure 1:  The beating net response of 2 similar signals combined 

Given that normally there is only a relatively small variation in the pace frequency between different pedestrians, pairs of 
pedestrians will appear to be walking in step quite often even though they may not remain so on average.  In the case of 
larger groups it is evident that the pedestrian group as a whole will ‘appear to be in step’ for a smaller proportion of the 
time, and that the mean time between maximum beats gets longer.  In crowded conditions the extreme maxima become 
very rare occurrences and are normally described by a probabilistic model. 

For the purposes of this study we assume that normally pedestrians in groups do not deliberately walk in step.   Thus in 
order to investigate the effect of small groups we assume that the pedestrians in the group, 

• cross the bridge together, so that at any point in time they are at the same location as each other, 

• have a similar mass as each other and apply a dynamic load of a similar magnitude, but that they 

• are uncorrelated, their pace frequency and timing being determined randomly from simple distribution functions. 

At any point in time the response produced by a single pedestrian is close to sinusoidal, and the contributions made by 
uncorrelated pedestrian passages to the net response tend to have the same magnitude, a similar but different 
frequency, and a different phase.  We can therefore examine the average effect of combinations of pedestrians by 
considering the mean amplitude of randomly combinations of sine waves. 

Matsumoto [9] and others previously used the RMS of the response as their measure of relative discomfort and arrived 
at the conclusion that the mean RMS response is proportional to √N, where N is the number in the group.   
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By the use of convolution integrals it is a fairly straightforward matter to verify this result.  For example the integral shown 
below determines the average of the RMS response for every possible combination of 3 signals of amplitude a. 
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And results of other similar equations can easily be generalised to the aforementioned √N result, 
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In a very similar manner, using our revised measure of discomfort, the integral of the ‘root-root-4th power mean’ (RR4M) 
can be obtained from, 
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Although not quite as simple as equation (2) above, the result of the ‘root-root 4th power mean’ can still be generalised 
to a manageable form, as follows, 
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Thus for small groups of pedestrians we are able to express the average relative increase in nuisance level with respect 
to that of a single pedestrian using equation (4) above 
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Values obtained from (5) are given below and compared with the increase in RMS predicted by the √N model. 

Table 1:  Alternative measures of group responses 

Number RMS/a RR4M
in group (N ) (std.dev.) RMS RMS Discomfort

1 0.71 0.78 1.107 1.00 1.00 1.19
2 1.00 1.22 1.225 1.41 1.57 1.68
3 1.22 1.54 1.257 1.73 1.97 2.06
4 1.41 1.80 1.273 2.00 2.30 2.38
5 1.58 2.03 1.282 2.24 2.59 2.66
6 1.73 2.23 1.288 2.45 2.85 2.91
7 1.87 2.42 1.292 2.65 3.09 3.14
8 2.00 2.59 1.295 2.83 3.31 3.36
9 2.12 2.75 1.297 3.00 3.52 3.56
10 2.24 2.91 1.299 3.16 3.71 3.76
20 3.16 4.14 1.308 4.47 5.28 5.31
50 5.00 6.56 1.313 7.07 8.39 8.40
100 7.07 9.29 1.314 10.00 11.88 11.88
500 15.81 20.80 1.316 22.36 26.58 26.56

RR4M/a
Relative increase in

1.188√N

 
 
It is shown that  1.188√N  can be used to give a very good approximation to the full expression for discomfort for groups 
>3, and the 20% over-estimate it gives for single pedestrians is normally of no importance since the response due  to a 
single pedestrian is never likely to be a real design case.  

For completeness, it is worth noting here that the √N model only applies to the prediction of RMS values and its use 
does not give response maxima (for which a value of N  must be used). 
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2.3 Crowds 

In the extreme, responses due pedestrian loading (or for that matter wind) can only be expressed stochastically.  Usually 
the probability of the amplitude (here of the deck vertical acceleration) having a particular value at any instant in time can 
be taken to be well modelled by a normal distribution.  When we integrate values from a normal distribution and examine 
the ratio of the RR4M to the RMS we find that RR4M/RMS = 1.316, this is in exact agreement with the results for groups 
given previously in table 1. 
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Figure 2:  Convergence of the 4th power mean nuisance measure for large crowds 

 

3. On the calculation of footbridge responses due to crowd loading 

 (Why steady state spectral models do not always work) 

 
The second part of this paper discusses several problems that arise in the use of spectral analytical methods to the 
prediction of bridge vertical responses to pedestrian excitation.  The subject matter presented here concerns the validity 
of the signal processing techniques at the heart of spectral analysis, and should be of particular interest to those readers 
who have previously understood that pedestrian loading is easily modelled as a stationary random process. 

Both Matsumoto in 1978 and more recently Brownjohn [10] and others have stated that the spectral contribution to the 
loading at a particular frequency can be treated as a near steady state condition.  We can easily demonstrate what this 
means in practice, without needing to discuss the nature of spectra, by simply recycling a single pedestrian across the 
span over and over till a near steady condition is achieved. 
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Figure 3:  Response for a recycling pedestrian load at resonance, pace frequency = 2.1Hz 

Figure 3 illustrates how the amplitude of bridge response grows with each successive crossing.  Eventually, after some 
time, near steady conditions prevail and it can be demonstrated that the response magnification Q that occurs is that of a 
simple single degree of freedom system.   
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For a simple 1 degree of freedom dynamic system the steady state response amplitude due to a load applied with a 
frequency is A(ω)=Q.(F0/K) where, 
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However by making one small change to the response model we can get a very different result.  The change is simply to 
restart each subsequent crossing with a randomly timed first step.  In other words the initial phase angle of the applied is 
randomly reset at the start of each successive pedestrian crossing.  Even though idealised load models may assume 
that each pedestrian remains at a constant frequency as they cross the span, there is no reason why successive 
pedestrian should remain in step.  The effect that this has on the calculated response is shown in figure 4 below. 

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0 10 20 30 40 50 60 70 80 90 100

 
Figure 4  Response for a recycling pedestrian load at resonance, resetting starting phase, pace frequency = 2.1Hz 

 
Clearly the response is now, (a) more unsteady and (b) generally smaller.  Over a longer timescale, occasionally the 
peak response will still reach the same amplitudes as the steady state model, but only very rarely. 

However if we now perform a Fourier analysis on the applied load we can see that instead of the input energy all being 
applied at the pace frequency as expected, it appears to have ‘leaked’ into the adjacent frequencies. 
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Figure 5:  Leakage of the applied load into the adjacent frequencies, pace frequency = 2.1Hz 
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This phenomenon of spectral leakage is well known (at least among signal processing engineers) and occurs in our 
approximation of the pedestrian loading in at least 3 places 

• In the lack of phase correlation between one pedestrian and the next (described above). 

• In the variations and imperfections of individual walking excitation (described by Brownjohn [10]). 

• As a result of long beat frequencies between the pace frequency and the span length (where in more complex 
mode shapes the pedestrian is in phase with the motion near the mode maxima but out of phase at anti-nodes). 

However the net effect that this has on calculated responses remains unclear, because while the response due to a 
pedestrian walking at the mode frequency is always reduced, leakage can also act to increase responses at other 
frequencies.  An indication of the effect this can have on the calculated response is given in Figure 6 below. 
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Figure 6: Effect of spectral leakage on calculated responses around resonance 

There is nothing in what has been said that invalidates the spectral analytical approach, but it becomes apparent that a 
complete treatment of this subject is more complicated than it initially appears.  All of the above can easily and 
adequately be dealt with by a little widening of the assumed load spectrum and a slightly increased safety factor.  
However if nothing else, this example shows that it is important that engineers should not get too carried away refining 
the load model which in addition to the above will vary greatly from site to site and time to time.   

 
4. On the calculation of dynamic responses at resonance 

 

BD 37/01 [11] describes the need to estimate the dynamic response due to a simple fluctuating vertical point load, F, 
that moves across the span of the bridge at a constant speed vt 

F = 180.sin(2.fo.t)    (in N), where t is the time (in sec)      (7) 

vt  = 0.9 fo
     (in m/sec)        (8) 

Two approaches are provided to achieve this end, the first is to apply some simplified rules based pre-calculated results 
for simple spans, the second is to perform an explicit dynamic analysis. 

Simplified response models 

In many if not most instances these models are simply not accurate, especially in the hands of the inexperienced. 

Explicit dynamic analysis 

In general the calculation of dynamic responses is considered to be a specialist task requiring the use of dedicated 
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dynamic software.  Experience suggests that when many engineering practices need to calculate the dynamic response 
using the explicit method this is considered to be a complex and somewhat difficult process.   

The third way 

The purpose of this section of the paper is to point out that there is an extremely simple way of calculating dynamic 
responses at resonance, without any error and without the need to use specialist software.  Furthermore this calculation 
method is so simple that there should never be any need to resort to the use of other less accurate rules such as that 
contained in BD37/01. 

 

Theory 

When excited at resonance because the excitation frequency and free decay frequencies are matched the response 
history is always of the form of a simple signal at the natural frequency fo , whose amplitude is modulated with time. 

At any given moment in time the response is influenced by two terms, 

• the work done by the applied force in exciting the motion, and 

• the energy lost over each cycle by the damping. 

For a simple mass being excited by a periodic force at resonance, 

).sin(..0 taFF ω=           (9) 

the response can be described by, 
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and the work done by this force over one cycle by, 
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If we treat a(t) as being constant for the moment we can integrate the rate of doing work (the input power) as a function 
of the local amplitude. 

2
..

sec/ 0Fa
WD

ω
=           (12) 

Now this results in an increase in energy in the system that can be expressed as 
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Which, for a small change in energy gives 
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By equating (12) and (14) we obtain an expression for the rate of increase in amplitude caused by the force F0, 

t
K
F

a ∂=∂ ...
2
1 0 ω           (15) 

For low damping the logarithmic decrement is approximately equal to the fractional decrease in amplitude during one 
cycle of vibration. 

a
a∆

≈δ            (16) 

Rewriting this to express the loss of amplitude per unit time, and using damping ratio instead of log.dec. gives, 

taa ∂−=∂ ... ωξ           (17) 
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Hence we can now write a simple expression for the net rate of change in amplitude at any moment in time, 
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Where ω2=K/M;  K and M are respectively the generalised stiffness and mass of the mode under investigation. 

 
Application 

Simply rewrite equation (10) as a recurrence formula.  And for suitably small time steps (say ∆t=0.001 sec), this can 
be used to determine the bounding amplitude at each moment in time. 
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If required the amplitude time history at any moment in time can be obtained by modulating the bounding amplitude for 
a(t) using equation (10) above. 

F0 is written as a function of t because the effective force applied to a structure also depends on a mode influence 
coefficient determined from where the load is applied within the span.  For a fluctuating force moving with a constant 
speed V across a span s, 
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Where ?(x) is the normalised mode shape that corresponds to K and M above. 

While for a simple sinusoidal mode shape,  
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FtF    and   F0(t) = 0 if V.t > s      (21) 

These equations can easily be implemented in a spreadsheet and require no specialist software at all. 

Figure 7 below compares the use of formula (19) in a spreadsheet with the results of a full time history analysis using 
Duhamel integration (which is itself not especially difficult). 
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Figure 7:  Comparison of full dynamic analysis with simple recursion formula 
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The effectiveness of the routine is demonstrated by its ability to calculate values for the dynamic response factor ψ of 
BD37/01 to allow for the combined effects of damping and span length.   
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Figure 8:  Dynamic response factor ψ 

 
With this intermediate approach at our disposal, that can easily calculate responses for any shape of mode, there ought 
to be no need to use approximate configuration factors from documents such as BD37/01 (which are can still be difficult 
to apply because of the need to approximate the input), instead responses can always be calculated precisely.  

 

Programming 

As an example of the ease with which this method can be applied there follows a sample program that reproduces the 
values in Figure 8 above. 

 
Function BD37xi(p, dr, L) 
    BD37xi = 180 / 700 * netresp(p, dr, 1, 1, L) 
End Function 
 
Function netresp(p, dr, F0, k, L) 
    Pi = 3.14159 
    vel = 0.9 * (p / 2 / Pi) 
    tmax = L / vel 
    tstep = 0.01 
    disp = 0 
    netresp = 0 
    For t = 0 To tmax Step tstep 
        x = vel * t 
        effectiveF0 = F0 * Sin(x / L * Pi) 
        disp = disp + respdx(disp, tstep, p, dr, effectiveF0, k) 
        If (Abs(disp) > netresp) Then netresp = Abs(disp) 
    Next t 
End Function 
 
Function respdx(x, dt, p, dr, F0, k) 
    If F0 = 0 Then F0 = 0.00001 
    respdx = dt * p * (F0 / k) / 2 * (1 - 2 * x * dr / (F0 / k)) 
End Function 



Footbridge 2005 – Second International Conference 
 
 

5. Conclusions 

• This document uses a more consistent approach to the assessment of the relative nuisance value of pedestrian 
groups than is generally in use at the present time by means of the use of the ‘root-root-4th power mean’ of the 
acceleration signal.  The relative nuisance value for different sized pedestrian groups is determined, and it is 
demonstrated that this technique provides consistent results when applied to large fully random populations. 

• The phenomenon of spectral leakage is encountered and it is demonstrated that pedestrian loading is not really 
a stationary random process after all, but that with caution it can still be treated as such.   

• A simple analysis algorithm (able to be implemented in a spreadsheet) is presented that, in many cases, will 
enable engineers to calculate pedestrian dynamic responses with the same precision as a full time history 
analysis. 

 

6. A cautionary footnote  

At times pedestrians do walk in step and we cannot pretend otherwise, for example walking down a slope or stairs will 
often result in different frequencies and greater synchronisation. 

When predictive analyses agree closely with tests (particularly crowd tests) these should be considered fortuitous and 
not evidence that the model used was a good one (at least not without considerable forensic effort). 

It is important that we keep our feet on the ground at all times, protecting safety issues where necessary with a healthy 
margin.  However we should try not to get carried and necessarily disapprove of lively bridges when safety is not a 
concern. 
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