

Gross Replacement Carbon footprint (GRCf) Toolkit

Nick Trump

The Institution of StructuralEngineers

News story

How to calculate embodied carbon

New target will require the UK to bring all greenhouse gas emissions to net zero by 2050.

UK becomes first major economy to

pass net zero emissions law

ice

Presidential Address

Shaping Zero: Towards net zero carbon for infrastructure

Net Zero

NetworkRail

ິ What are our <u>sustainability targets</u>?

We commit to:

- Reduce absolute scope one and two greenhouse gas emission (those within our control) by 46% by 2029.
- Reduce absolute scope three (indirect) emissions by 28% by 2029.
- Ensure 75% of our suppliers by emissions covering purchased goods and services and capital goods (those used in the production of other goods) have science-based targets by 2025.

Government to speed up UK climate change target

The PM says carbon emissions must fall by almost 80% by 2035 - 15 years earlier than previously planned.

19 JUL 2019

News & opinior

RICS Building Carbon Database

Rail Carbon Tool

15/02/2021

SHARE THIS

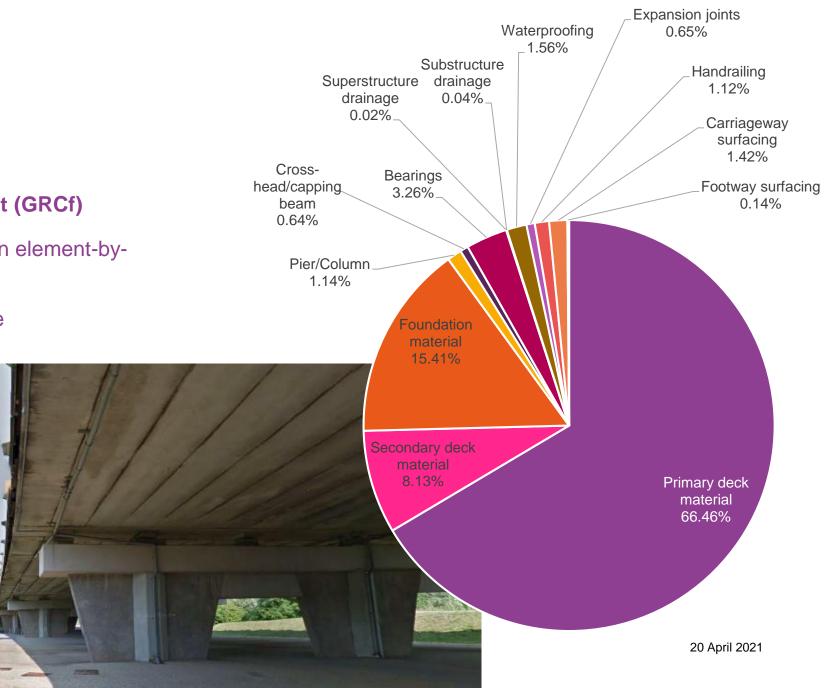
The Rail Carbon Tool is here to assist the UK rail industry with understanding what its carbon footprint is so it can go on and reduce it throughout its supply chain.

3

Calculate and reduce carbon impact across structures

Main aims

- Create an open-source tool
- Quantify: baseline, maintenance, offsetting
- Improve awareness and understanding on carbon
- Change procurement focus to include sustainability
- Communicate and knowledge share across the sector


Why are you looking at the embodied CO2e?

Baseline approach

- Replace like-for-like, CO2e content
- Gross Replacement Carbon footprint (GRCf)
- Understand the embodied carbon on an element-byelement basis

3

• Unlocks understanding on the structure

Funding requests

Recent chloride testing has indicated a high chance of corrosion, what would be the replacement carbon cost if a CPS is not installed and the steel protected?

Asset management

How do our proactive maintenance strategies align with our known high-carbon structures?

Major intervention

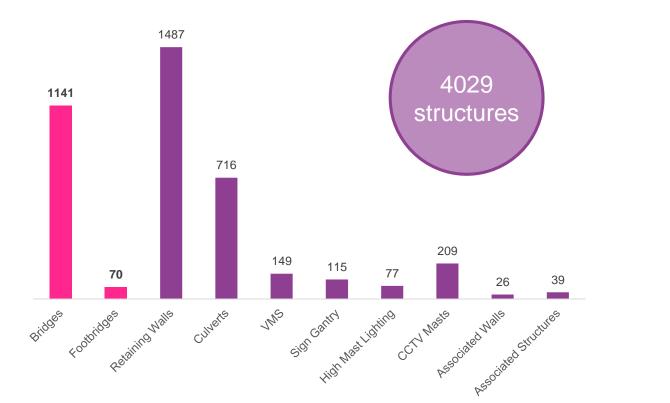
How does replacement carbon compare to embodied carbon? Is strengthening really not an option?

Maintenance

The handrailing paint has flaked off. If the handrailing continues to corrode and deteriorates what would be the carbon cost of replacement?

Knowledge

How do our different construction form bridges compare?


Procurement stage

How does CAPCarb compare to OPCarb? Can we plan long term?

How do you calculate GRCf?

Welsh Government network

- 1211 bridges
- ~ 60 types of construction form
- Automated approach to calculation
- Justifiable and usable by other asset owners

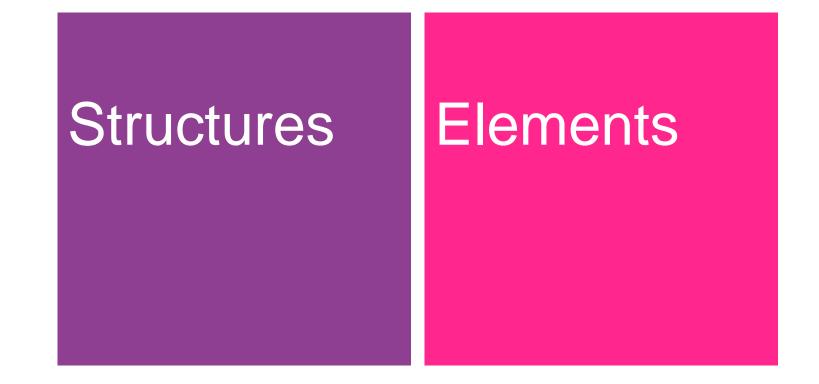
A458 050

Workflow

Dimensions

Quantities of materials

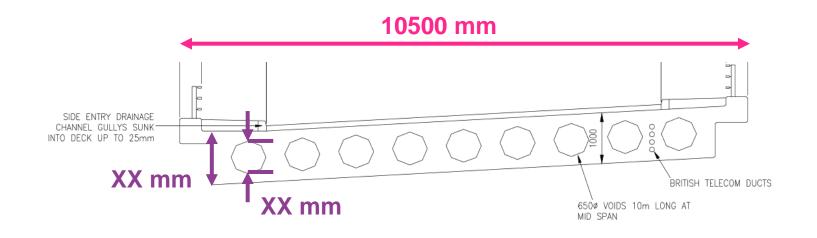
Rates

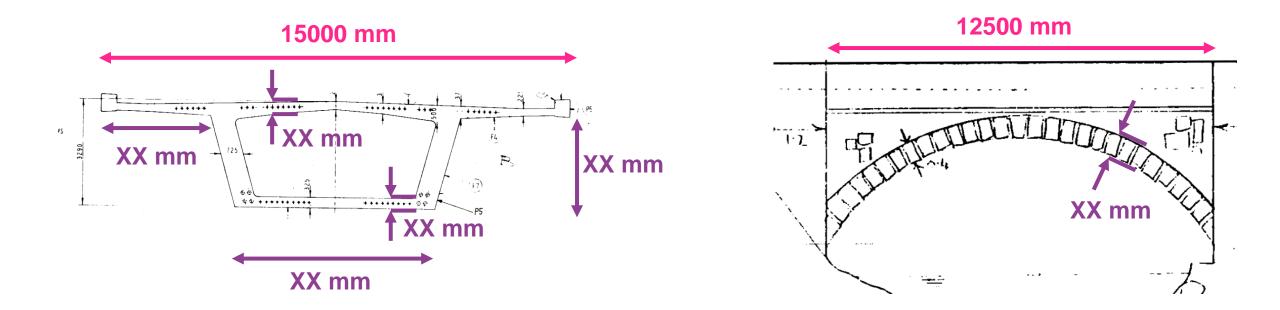

X

Rate of each material ICE DB V3.0 TATA guide Etc.

Dimensions

Existing data

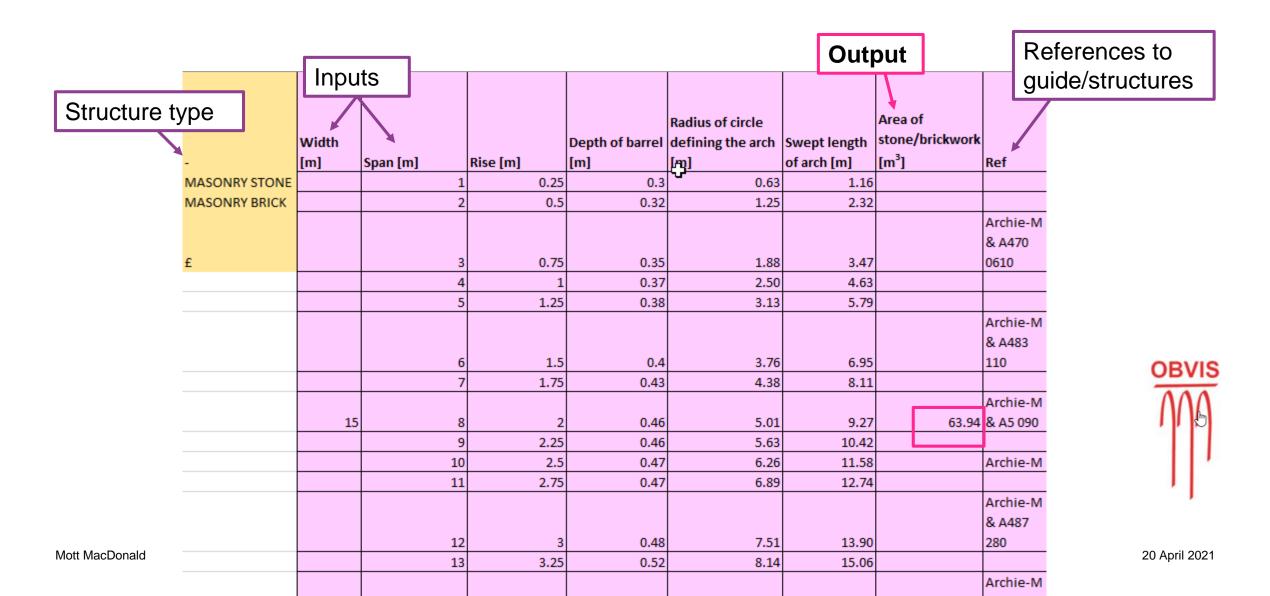



Structures

Name of Structure	Structure Type		Structure type		Span construction type			Fixity		Length (m) of Structure	of Structure	OR Average Height (m) of Structure	
		or 3 spans)	SLAB					Γ	~		5.6	5 17.8	
A40 670 - PONT MARLAIS - SPAN1	pan level	ngle span)	SLAB	Structure	type				Span	length	7.3	3 13.2	2 5.03
A40 680 - PONT DULAIS - SPAN1		ngle span)	SLAB			TEN, INV	'T' BEAMS, IN SITU CONC INFILL (CO	OMPOSITE)	-	-	9.5	5 16	5 5.03
A40 70 - LONGSTONE BRIDGE - SPAN1	Bridge: Vehicular (si	ngle span)	PORTAL		£				?		15.2	2 26.5	5.03
A40 700 - PONT MYDDFI - SPAN1	Bridge: Vehicular (2	or 3 spans)	ARCH, FIL	LED SPANDREL	MASONRY CO	ONCRETE	BLOCKS		MORTAR JO	INTED	2.66666667	7 12.5	5.03
A40 700 - PONT MYDDFI - SPAN2	Bridge: Vehicular (2	or 3 spans)	ARCH, FIL	LED SPANDREL	MASONRY CONCRETE BLOCKS			-	-		7 12.5	5.03	
A40 700 - PONT MYDDFI - SPAN3	Bridge: Vehicular (2	or 3 spans)	ARCH, FIL	LED SPANDREL	MASONRY CONCRETE BLOCKS			-		2.66666667	7 12.5	5.03	
A40 710 - NANT STEPHANAU - SPAN1	Bridge: Vehicular (si	ngle span)	ARCH, FIL	LED SPANDREL	MASONRY CONCRETE BLOCKS			MORTAR JO	INTED	3.68	8.8	5.03	
A55 0730 - DINERTH RD U/BRIDGE - SPAN1	Bridge: Vehicular (si	ngle span)	BOX TYPE STRUCTURE		RC, SLAB			FIXED		9.91	L 25.8	4.2	
A40 730 - PONT DULAS (DRYSLWYN) - SPAN1	Bridge: Vehicular (si	ngle span)	BEAM AND SLAB		PRECAST PRETEN, INV 'T' BEAMS, IN SITU CONC INFILL (COMPOSITE)			SIMPLY SUP	PORTED	12.75	5 12.36	5 3.3	
A40 739 - PONT AR GOTHI RD BR - SPAN1	Bridge: Vehicular (2	ge: Vehicular (2 or 3 spans) ARCH, THROUGH (UNTIED)		MASONRY STONE			FIXED		10.65	5 7.8	5.03		
A40 739 - PONT AR GOTHI RD BR - SPAN2	Bridge: Vehicular (2	or 3 spans)	ARCH, TH	ROUGH (UNTIED)	MASONRY ST	ONE		-	FIXED		10.65	5 7.8	5.03
A40 739 - PONT AR GOTHI RD BR - SPAN3	Bridge: Vehicular (2	or 3 spans)	ARCH, TH	ROUGH (UNTIED)	MASONRY ST	ONE	Form of		FIXED		10.65	5 7.8	5.03
A40 750 - FELIN WEN WHITEMILL - SPAN1	Bridge: Vehicular (si	ngle span)	SLAB		RC, SLAB				SIMPLY SUP	SIMPLY SUPPORTED		5 12.1	L 5.03
A40 1155 - Maesgwynne Road Bridge - SPAN1	Bridge: Vehicular (si	ngle span)	BOX TYPE	STRUCTURE	RC		construction		NOT APPLICABLE		9.66	5 37	5.85
A40 755 - Bat Roost - SPAN2	Bridge: Vehicular (2	or 3 spans)	BOX TYPE	STRUCTURE	RC				NOT APPLIC	ABLE	1.5	5 26	5 5.03
A40 762 - Bishops Mill Culvert - SPAN1	Bridge: Vehicular (si	ngle span)	BOX TYPE	STRUCTURE	IN SITU RC, B	ARREL			FIXED		4.8	3 16.45	5 2.8
A40 765 - Gwili River Bridge - SPAN1	Bridge: Vehicular (2	Bridge: Vehicular (2 or 3 spans) SLAB (WITH EDGE CANTILEVERS)		RC, SLAB			FIXED		15	5 13.4	3.75		
A40 765 - Gwili River Bridge - SPAN2	Bridge: Vehicular (2	or 3 spans)	SLAB (WITH EDGE CANTILEVERS)		RC, SLAB			FIXED		15	5 13.4	3.75	
A40 765 - Gwili River Bridge - SPAN3	Bridge: Vehicular (2	or 3 spans)	SLAB (WI	TH EDGE CANTILEVERS)	RC, SLAB			FIXED		15	5 13.4	3.75	
A40 768 - Green Meadow Overbridge - SPAN1	Bridge: Vehicular (4	or more spans)	SLAB (WI	TH EDGE CANTILEVERS)	RC, SLAB			CONTINUO	CONTINUOUS		5 11.4	4 <u>6.2</u>	
A40 768 - Green Meadow Overbridge - SPAN2	Bridge: Vehicular (4	or more spans)	SLAB (WI	TH EDGE CANTILEVERS)	RC, SLAB			CONTINUC			11.4	6.2	
A40 768 - Green Meadow Overbridge - SPAN3	Bridge: Vehicular (4	or more spans)	SLAB (WI	TH EDGE CANTILEVERS)	RC, SLAB			CONTINUC	Width	of spa	an 11.4	6.2	
A40 768 - Green Meadow Overbridge - SPAN4	Bridge: Vehicular (4	or more spans)	SLAB (WI	TH EDGE CANTILEVERS)	RC, SLAB				CONTINUC		±1./.	11.4	6.2
M4 39-40 7 - BROMBIL LANE UPASS - SPAN1	Bridge: Vehicular (si	ngle span)	BOX TYPE	STRUCTURE	RC				FIXED		9.9	5 75.7	7 5.03

Elements

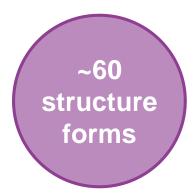
Identifier of Structure	Name of structure	Full Name of Element	Component/Material Type	Condition at last inspection	Proximity to Traffic Spray Zone			
A40 10 - 1	A40 10 - CHAPEL FARM - SPAN1	Br01. Primary Deck Element	Insitu Reinforced Concrete	2B	Not within 3 metres' proximity to spray zone / Not applicable			
A40 10 - 1	A40 10 - CHAPEL FARM - SPAN1	Br03. Secondary Deck Element	Insitu Reinforced Concrete	1A	Not within 3 metres' proximity to spray zone / Not applicable			
A40 10 - 1	A40 10 - CHAPEL FARM - SPAN1	Br06. Parapet Beam or Cantilever	Insitu Reinforced Concrete	4C	Not within 3 metres' proximity to spray zone / Not applicable			
A40 10 - 1	A40 10 - CHAPEL FARM - SPAN1	Br08. Foundations	Foundation material	1A	Not within 3 metres' proximity to spray zone / Not applicable			
A40 10 - 1		Br09. Abutments (incl. Arch Springing)	Insitu Reinforced Concrete	2C	Within 3 metres' proximity to spray zone			
A40 10 - 1	Reference to	Br15. Superstructure Drainage	Plastic (External)	3D	Not within 3 metres' proximity to spray zone / Not applicable			
A40 10 - 1	structuro	Br16. Substructure Drainage	Plastic (External)	3C	Not within 3 metres' proximity to spray zone / Not applicable			
A40 10 - 1	structure	Br17. Waterproofing	Spray Systems	1A	Not within 3 metres' proximity to spray zone / Not applicable			
A40 10 - 1	A40 10 - CHAPEL FARM - SPAN1	Br18. Expansion Joints	Other/Unknown Expansion Joint	1A	Not within 3 metres' proximity to spray zone / Not applicable			
A40 10 - 1	A40 10 - CHAPEL FARM - SPAN1	Br21. Finishes: Parapets/Safety Fences	Other/Unknown Finish	SE	Not within 3 metres' proximity to spray zone / Not applicable			
A40 10 - 1	A40 10 - CHAPEL FARM - SPAN1	Br23. Handrail/Parapets/Safety Fences	Steel	4D	Not within 3 metres' proximity to spray zone / Not applicable			
A40 10 - 1	A40 10 - CHAPEL FARM - SPAN1	Br24. Carriageway surfacing	Carriageway surfacing	3C	Not within 3 metres' proximity to spray zone / Not applicable			
A40 10 - 1	A40 10 - CHAPEL FARM - SPAN1	Br25. Footway/verge/footbridge surfacing	Footway surfacing	2C	Not within 3 metres' proximity to spray zone / Not applicable			
A40 10 - 1	A40 10 - CHAPEL FARM - SPAN1	Br30. Revetment/Batter Paving	Other/Unknown Revetment	2B	Not within 3 metres' proximity to spray zone / Not applicable			
A40 10 - 1	A40 10 - CHAPEL FARM - SPAN1	▼31. Wing Walls	Blockwork, i.e. Masonry or Stone	2C	Within 3 metres' proximity to spray zone			
A40 10 - 1	A40 10 - CHAPEL FARM - SPAN1	Br33. Embankments	Natural Embankment Material	1A	Not within 3 metres' proximity to spray zone / Not applicable			
A40 10 - 1	A40 10 - CHAPEL FARM - SPAN1	Br35. Approach Rails/Barriers/Walls	Weathering Steel	4D	Not within 3 metres' proximity to spray zone / Not applicable			
A40 10 - 1	A40 10 - CHAPEL FAF	Br36. Signs	Warning Signs	2B	Not within 3 metres' proximity to spray zone / Not applicable			
A40 100 - 1	A40 100 - JINGLE STE	Br01. Primary Deck Element	Insitu Reinforced Concrete	2C	Not within 3 metres' proximity to spray zone / Not applicable			
A40 100 - 1	A40 100 - JINGLE STE NAME	Br06. Parapet Beam or Cantilever	Insitu Aeinforced Concrete	3C	Not within 3 metres' proximity to spray zone / Not applicable			
A40 100 - 1	A40 100 - JINGLE STR	Br08. Foundations		1A	Not within 3 metres' proximity to spray zone / Not applicable			
A40 100 - 1	A40 100 - JINGLE STREET BRIDGE - SPAN1	1 Br09. Abutments (incl. Arch Springing)	Material	2C	Within 3 metres' proximity to spray zone			
A40 100 - 1	A40 100 - JINGLE STREET BRIDGE - SPAN1	1 Br11. Pier/Column	material	3B	Within 3 metres' proximity to spray zone			
A40 100 - 1	A40 100 - JINGLE STREET BRIDGE - SPAN1	1 Br13. Bearings	Other/Unknown Bearing	2C	Not within 3 metres' proximity to spray zone / Not applicable			
A40 100 - 1	A40 100 - JINGLE STREET BRIDGE - SPAN1	1 Br14. Bearing Plinth/Shelf	Insitu Reinforced Concrete	2C	Not within 3 metres' proximity to spray zone / Not applicable			
A40 100 - 1	A40 100 - JINGLE STREET BRIDGE - SPAN1	1 Br15. Superstructure Drainage	Plastic (External)	3C	Not within 3 metres' proximity to spray zone / Not applicable			
A40 100 - 1	A40 100 - JINGLE STREET BRIDGE - SPAN1	1 Br16. Substructure Drainage	Plastic (External)	2C	Not within 3 metres' proximity to spray zone / Not applicable			
A40 100 - 1	A40 100 - JINGLE STREET BRIDGE - SPAN1	1 Br17. Waterproofing	Spray Systems	1A	Not within 3 metres' proximity to spray zone / Not applicable			
	440 100 - UNGLE STREET BRIDGE - SPAN1	1 Br18 Expansion loints	Other/Unknown Expansion Joint	4R	Not within 3 metres' provimity to spray zone / Not applicable			


How do you fill in the blanks?

Inverted T Beams

		Inputs			[Outputs		References to guide/structures	
	Structure type				Depth of	Volume of	Volume of steel reinforcement		
	PRECAST REINFORCED CONCRETE	Width [m]	Span [m]	Depth [m]	slab [m]	concrete [m ³]	[m ³]	Ref	
	PRECAST PRETEN, INV 'T' BEAMS, IN SITU CONC INFILL (COMPOSITE)		2	0.133	0.075			-	
								A470 1090	
								(Pierhead 5 1/4"	
	PRECAST RC, BEAMS, R.C. SLAB, (NON-COMPOSITE)		3	0.133	0.075			beams)	
	IN SITU RC, BEAMS, R.C. SLAB, (COMPOSITE)		4	0.38	0.075			T1 🖧	
	PRECAST PRETEN, INV 'T' BEAMS, IN SITU CONC INFILL (COMPOSITE + TRANSVERSE)		5	0.38	0.075			T1	
	IN SITU RC, BEAMS, R.C. SLAB, (NON-COMPOSITE)		6	0.38	0.075			T1	
	PRECAST RC, BEAMS, R.C. SLAB, (COMPOSITE)		7	0.38	0.075			T1	
	PRECAST PRETEN, 'I' BEAMS, R.C. SLAB, (COMPOSITE)		8	0.42	0.075			A470 0730 (T2)	
	PRECAST PRETEN, 'I' BEAMS, IN SITU CONC INFILL, (COMPOSITE)		9	0.5	0.075			A40 955 (TY3)	
	PRECAST PRETEN, NON STD BEAM, IN SITU CONC INFILL, (COMPOSITE)	12	10	0.535	0.075	73.2	2.5	62 A40 460 (T3)	
	?		11	0.575	0.075			A40 840 (T4)	
	-		12	0.615	0.075			T5	
Мс			13	0.655	0.075			T6	1
ivic			14	0.655	0.1			T6	
			15	0.695	0.1			T7	

Filled spandrel arches



What did you use to do this?

Covered structure forms

- RC solid slabs (+ with edge cantilevers)
- Post tensioned (PT) slabs (+ with edge cantilevers)
- Voided slabs (+ with edge cantilevers)
- Ribbed RC
- Composite steel/concrete (+ with edge cantilevers)
- Encased steel beams
- Steel box girders (+ with edge cantilevers)
- PT voided boxes (+ with edge cantilevers)
- PT I beams
- T, Y, U, M beams (+ with edge cantilevers)
- Single & multi cell box culverts (+ with edge cantilevers)

- Masonry, brickwork, concrete arches
- Steel ribbed arches
- RC single & multi cell concrete box spine beams
- PT spine beams
- Encased steel spine beams
- Pre-stressed box spine beams

References

Archie-M - filled spandrel arches

T,Y,M, etc. beams

TATA STEEL

Eurocode Preliminary Steel Composite Highway Bridge Design

composite bridges

box culverts

ATKINS

Ŷ

Llywodraeth Cymru Welsh Government

Empirical - Existing structure data

What next?

Next steps

Stage 0 – baseline

- GRCf (Gross

Replacement Carbon

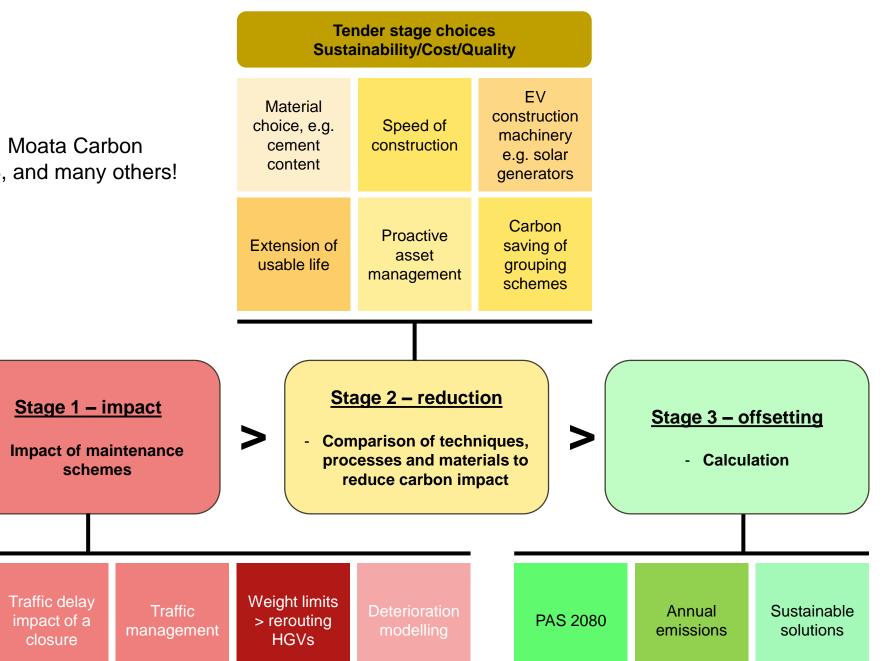
footprint)

Demolition

carbon cost

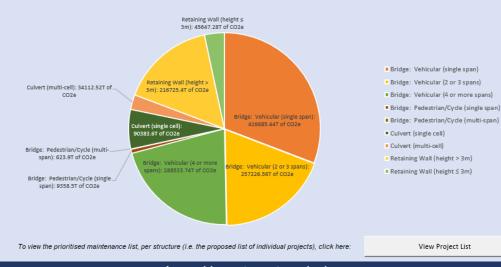
Plant & fuel.

Labour

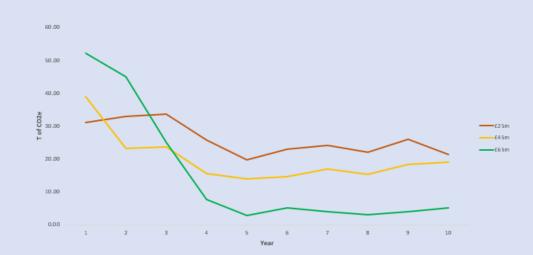

- Tie into work by others e.g.: ٠
- IStructE modules, TATA guide, Moata Carbon • Portal, ICE V3.0, RICS, RSSB, and many others!


Stage 1 – impact

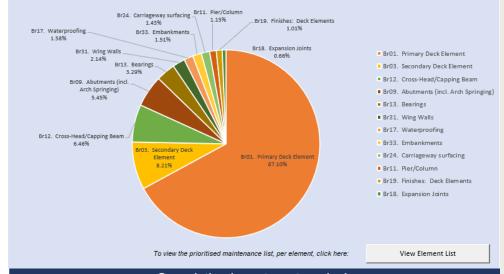
schemes


impact of a

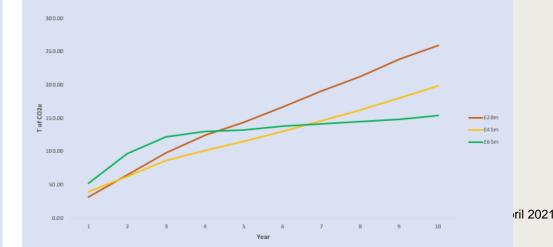
closure



Gross Replacement Carbon footprint, by structure type



Annual investment analysis



Mott Mac

Gross Replacement Carbon footprint, by element

Cumulative investment analysis

Thank you. Any questions?